Question 1. Marks

- (a) Let z = 5 2i and w = 3 + 4i.
 - (i) Find $2w \overline{w}$.
 - (ii) Find $z(2w-\overline{w})$.
- (b) Given $\alpha = 1 i\sqrt{3}$,
 - (i) Find the exact value of $|\alpha|$ and $Arg(\alpha)$.
 - (ii) Hence or otherwise, find the exact value of α^8 . 3 [express in the form a+ib, where a and b are real numbers]
- (c) Find the new complex number when 1+i is rotated 45^0 anticlockwise **2** about the origin O, in the Argand plane.
- (d) Find x and y, when (x+iy)(2+3i) = 5+6i.
- (e) Given $\psi^2 = 24 70i$, 2

Find ψ in the form a+ib, where a and b are real.

Question 2. [START A NEW PAGE]

- (a) Shade the region of the Argand plane consisting of those variable points *z* for which:
 - (i) Re(z) < 2 and Im(z) > -1.
 - (ii) $|z-1-i| \le 1 \text{ and } 0 \le \arg z \le \frac{\pi}{4}.$
- (b) Find the equation of the locus of z, if |z i| = Im(z). Sketch the locus on an Argand plane.
- (c) Find the equation of the locus of z when $\arg\left(\frac{z-1}{z+1}\right) = \frac{\pi}{2}$.

Q 2 continued

- (d) Given that z = x + iy is a variable point on the Argand plane such that $z\overline{z} 2(z + \overline{z}) = 21$.
 - (i) Find the locus of z. 2
 - (ii) Hence determine the maximum value of: |z-4|.
- (e) Given 1, ω and ω^2 are the cube roots of unity and each are represented by the points A_1 , A_2 and A_3 respectively on an Argand plane.

Find the value of $A_1A_2 \times A_1A_3$, where ' A_1A_2 ' represents the length A_1A_2 .

Question 3. [START A NEW PAGE]

(a) Point *A* represents the complex number α and the point *P* represents the complex number *z*. Point *P* is rotated about the point *A* through a right angle in an anticlockwise direction to take up the new position, *B*, representing the complex number β .

Find β (in terms of α and z).

- (b) Given $z = \cos \theta + i \sin \theta$,
 - (i) Use De Moivre's theorem, to show that 2

$$\cos n\theta = \frac{1}{2} \left(z^n + z^{-n} \right).$$

- (ii) Hence deduce that: $\cos \theta \cos 2\theta = \frac{1}{2} (\cos \theta + \cos 3\theta)$ 3
- (c) Given the complex number z, such that $z = k(\cos \theta + i \sin \theta)$, where k is a real number and $0 < \theta < \pi$. Show that: $\arg(z + k) = \frac{1}{2}\theta$.

Q 3. continued

- (d) Given z = x + iy is a variable point and $\alpha = a + ib$ is a fixed point on the Argand plane,
 - (i) Show that $z\alpha \overline{z}\overline{\alpha} = 0$ represents a straight line through the origin O.
 - (ii) Suppose that z_1 and z_2 are the solutions to the simultaneous equations: $z\alpha \overline{z}\overline{\alpha} = 0$ and $|z \beta| = k$, where $\beta = p + iq$, and where p, q and k are positive real numbers, show that $|z_1||z_2| = |p^2 + q^2 k^2|$.

Question 4. [START A NEW PAGE]

(a) Let α , β and γ be the zeros of the polynomial function: $P(x) = x^3 + 2x^2 + 19x + 18.$

(i) Find
$$\alpha + \beta + \gamma$$
.

(ii) Find
$$\alpha^2 + \beta^2 + \gamma^2$$
.

- (iii) Hence, or otherwise determine how many of the zeros are real. **2** Give reasons.
- (b) Consider the polynomial equation: $z^5 i = 0$,

(i) Show that
$$z = i$$
 is a solution to the equation, and hence show that $1 - iz - z^2 + iz^3 + z^4 = 0$, for $z \neq i$.

(ii) Hence or otherwise, find all the roots of
$$z^5 - i = 0$$
. [you may leave the roots in $cis\theta$ form]

(iii) Show that
$$(z-i)[z^2-2i\sin\frac{\pi}{10}z-1][z^2+2i\sin\frac{3\pi}{10}z-1]=0$$
. 4

(iv) Hence show that:
$$\sin \frac{\pi}{10} \sin \frac{3\pi}{10} = \frac{1}{4}$$
.

THE END

